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SUMMARY

The ground vehicle mine blast mitigation problem represents a research topic that has recently been
generating a very high level of interest and activity. Many aspects of the physics of the problem have
been extensively researched. One area that has been neglected, however, is that aspect of the blast threat
that relates to the rheology and flow, subsequent to ignition of the explosive, of the relatively energetic
mixture of air and soil, sometimes referred to as ejecta.

Methods developed for the study of fluidized beds that are used in, e.g. the chemical and power
generation process industries, were adapted in order to more clearly define the rheology of air–glass
bead mixtures and also of air–soil mixtures that comprise the ejecta. Continuity and momentum balance
equations developed for fluidized beds were adapted, using physical properties of glass beads and soils,
into a form relates to the properties of mine blast ejecta.

These equations were then discretized and solved, for a relatively simple geometry, in order to validate
the model and gain a general sense of the flow behavior of particle–air blends. Parametric studies were
performed to estimate the variation of the rheology of the air–particle mixtures as a function of the particle
diameter and the sphericity of the particles. Finally, the flow properties of a couple of real soils were
investigated via application of the two-phase flow model. Copyright q 2009 John Wiley & Sons, Ltd.
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INTRODUCTION

As a result of recent world events, the ground vehicle mine blast mitigation problem constitutes
a research topic that has been generating increased interest and activity. Physical tests of vehicle
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systems that are subjected to blast loads are relatively expensive. The judicious development and
use of properly conceived computational and analytical methods can be used to significantly reduce
the scale and cost of experimentation and thus moderate the cost of development of mine-protected
vehicles.

Analysis of the mine blast problem typically involves evaluation of the dynamic behavior and
interaction of high explosives, soil, air and structures such as the armored plates associated with
commercial and military ground vehicles. The blast load from air and gaseous high explosive
reaction products is typically modeled by using either reduced-order techniques based on pre-
processed data [1] or as a mixture of gaseous fluids using an arbitrary Lagrange–Euler treatment [2].

The Mohr–Coulomb model constitutive treatment of the viscoplastic properties of the soil in its
relatively dense and granular form [3, 4] equates the deviatoric components of stress in the solid–
soil mass to a function of soil cohesion strength, angle of friction, and hydrostatic pressure and has
reached a fairly advanced state of evolution. In fact more recent work includes the development
and validation of an improved viscoplastic cap model that includes strain rate effects [5] and has
been shown to be suitable for modeling of time-dependent problems such as that of mine blast.

The Mohr–Coulomb approach represents a suitable technique for the part of the problem that
involves soil compaction and crater forming, but soil in the somewhat more dilute concentration
levels that are observed in blast ejecta has been modeled most frequently either by means of
techniques such as smoothed particle hydrodynamics, or by means of the multi-material arbitrary
Lagrange–Euler method, apparently, in the case of the latter, with the tacit assumption of Newtonian
rheology for the soil component of the mixture, e.g. Laine et al. [6], and Neuberger et al. [4].
It does not seem entirely clear whether the arbitrary Lagrange–Euler modeling methods currently
used for soil ejecta, i.e. soil ejected at a high velocity away from the sources of explosions, yield
sufficiently accurate rheological predictions.

Bergeron et al. [7] and Hlady [8] have reported, based on measurements from physical tests, that
soil ejecta tends to have a significant mechanical loading effect on panels. Depending on the depth
of burial of the mine and the type and condition of the soil, the soil ejecta could actually present
the most significant loading effect on the surfaces of the vehicles. A more properly conceived
and implemented constitutive model for the rheology of the multi-phase behavior of the air–soil
mixture would be expected to allow improved understanding of this portion of the physics of blast
and to, by means of the concomitant improved fidelity of numerical models, enable better designs
for mine-protected vehicles.

Multi-phase flow has been investigated and analyzed for the treatment of problems with flow
regimes that exhibit some similarities to the mine blast soil–air mixture. These analyses were
performed for application in fields as diverse as coal fraction separation [9], chemical processing
[10], and the study of emissions of granular solids—in various concentrations in mixture with air
and water—from volcanoes [11]. Some of the seminal theoretical development in the field of multi-
phase flow was published by Anderson and Jackson [12] for the description of domain-averaged
flow of solid particle–gas systems and by Ishii, originally in 1975, and significantly updated and
expanded by Ishii and Hibiki [13] for the description of gas–liquid flows.

For the purposes of the present study, the constant particle viscosity methodology as synthesized
and presented by Enwald et al. [14] and by Johansson et al. [15] was modified appropriately,
validated by use of experimental results reported by Anjaneyulu and Khakhar [12] then subsequently
used in conjunction with soil parameters from the data assembled and presented by Cho et al. [16]
in order to put forward a first step toward the development of a methodology for more appropriately
treating the soil–air rheology that is applicable to mine blast.
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The tools developed during this study represent a step toward a better understanding and
quantification of the effect of mine blast soil ejecta on ground vehicle structures and, given sufficient
future refinement and validation with experimental data, their application is expected to reduce
development costs and improve the robustness of mine-protected ground vehicle blast mitigation
designs.

THE GAS–PARTICLE FLOW MODEL

Following the development presented in Johansson et al. [15], the governing continuity and
momentum balance equations, developed by [13], that were used for the particle–air flow are

�
�t

(�g�g)+∇ ·(�g�gUg)=0 (1)

�
�t

(�g�gUg)+∇ ·(�g�gUgUg)=∇ ·�g�g+�g�gg−�g∇P−�(Ug−Up) (2)

for the gaseous, air, component (g), and

�
�t

(�p�p)+∇ ·(�p�pUp)=0 (3)

�
�t

(�p�pUp)+∇ ·(�p�pUpUp)=∇ ·�p�p+�p�pg−�p∇P−∇Pp+�(Ug−Up) (4)

for the particulate components. � is the volume fraction, � is the density, U is the velocity vector,
� is the viscous stress tensor, g is the gravitational acceleration vector, P is the static pressure,
� is the interphase momentum transfer coefficient and Pp is an estimate of the particle–particle
interaction force. The total volume fraction is equal to one, hence

�g+�p=1 (5)

The viscous shear stress tensor was modeled, for each phase, by

�l =(�l − 2
3�l)(∇ ·Ul)I +2�l Sl (6)

where �l represents bulk viscosity, �l is the dynamic viscosity, and Sl is the rate of deformation
tensor

Sl = 1
2 (∇Ul +(∇Ul)

T) (7)

Based on the findings of van Wachem et al. [17] the correlation, developed by Wen and Yu [18],
for the interphase momentum transfer coefficient � that was used is

�= 3

4
CD

(1−�p)�p�g|Ug−Up|
�dp

(1−�p)
−2.65 (8)

where dp is the mean particle diameter, 	 is the particle sphericity, and CD is the coefficient of
drag for a single sphere.
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The correlation used for the single sphere drag coefficient CD was presented by Rowe [19] and is

CD = 24

Rep(1−�p)
{1+0.15[(1−�p)Rep]0.687} for (1−Rep)<1000

CD = 0.44 for (1−Rep)�1000

(9)

Rep is the particle Reynolds number and is defined as

Rep= �dp�g|Ug−Up|
�g

(10)

Finally, the scale of the particle–particle interaction force Pp was estimated by means of [20]
∇Pp=G0e

−c(�g−�g,min) ·∇�p (11)

where G0 and c are empirically determined constants, �g is gas-phase volume fraction, and �g,min
is the smallest possible gas volume fraction. The viscosity of the particle phase was treated as a
constant according to the so-called constant particle viscosity method [15].

MODEL FOR FLOW BEHAVIOR

Model geometry

The geometry used in all cases is the geometry that was employed by Anjaneyulu and Khakhar [10]
in their experimental study of the rheological behavior of an air–glass bead fluidized bed (Figure 1).
A rotating cylinder imparts shear stress to an annular fluidized bed containing various mixtures
of air and particles and the gross particle flow behavior is measured and deduced. Boundary
conditions at the cylinder walls, based on Anjaneyulu and Khakhar’s conclusions for the mixture

Figure 1. Simplified model geometry for analytical and numerical test cases, inner rotating cylinder
radius=0.006m, fluidized bed outer radius=0.0325m.
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are assumed to be no slip. The radius of the rotating cylinder is 0.006m, the outer radius of the
bed is 0.0325m. The cylinder rate of rotation is 5

6 rev/s.

Equations of motion for test cases

It was assumed, based on the experimental results reported by Anjaneyulu and Khakhar [11], that
the flow was unidirectional azimuthal (q-direction) flow. Based on the same findings it was also
assumed that no-slip boundary conditions could be applied and that there were no edge effects.

The continuity relations, Equations (1) and (3), vanish and after some simplification, the fluid
flow is defined using the following three relations:

−�p
u2
,p

r
=−G0e

−c(�g−�g,min) · ��p
�r

(12)

�g

[
�
�r

�g

(
1

r

�
�r

(ru
,g)

)]
−�(u
,g−u
,p)=0 (13)

�p

[
�
�r

�p

(
1

r

�
�r

(ru
,p)

)]
+�(u
,g−u
,p)=0 (14)

Definition of boundary conditions

As stated before, it was demonstrated by Anjaneyulu and Khakhar [11] that there was no slip at
the walls of the internal rotating cylinder as well as at the wall of the outer cylinder.

This leads to definition of the boundary conditions for the problem, which are

u
,k(r =ri)=2�ri�0 (15)

u
,k(r =ro)=0 (16)

where ri,ro, and �0 are rotating cylinder radius, outer wall radius, and rotational speed of inner
cylinder, respectively.

Physical properties for gas and particle phases

The experimental data from Anjaneyulu and Khakhar [10] used in this work were those generated
under minimum fluidization conditions, viz, under those conditions for which the pressure drop
through the column matched the body force, from gravity, that was exerted on the material contained
in the column.

The choice for the value of �p was based on results reported in the literature for minimum
fluidization conditions. Olowson and Almstedt [21] suggest that, for minimum fluidization, the
particle volume fraction �p is 0.54. McCabe et al. [22], suggest that, for nearly spherical particles,
�p should be approximately 0.55–0.60, decreasing a bit with increasing particle size.

Based on the experimental conditions and the geometry, a scale analysis was performed on
Equation (12). Order of magnitude estimates of the various quantities in Equation (12) is presented
in Table I.

Based on these estimates, it was determined that the radial variation of the particle volume
fraction ��p across the bed was of the order of 10−3, whereas the order of magnitude of �p was
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Table I. Parameter orders of magnitude for the estimate of radial
variation of particle volume fraction �p.

Parameter Scale Units

� 1.00E+03 kg/m3

u2 1.00E−04 (m/s)2

R 1.00E−02 m
G0 exp[−c(�p,max−�p)] 1.00E+02 N/m2

�r 1.00E−02 m
�p and �p,max 1.00E−01 dimensionless

Figure 2. Correlations for G0 exp[−c(�p,max−�p)]. Note that voidage is the gas-phase
gas fraction �g and is equal to 1−�p [15].

Table II. Physical properties of glass beads and air.

Property Air (20◦C) Glass beads Units

Sphericity � — 1.00E+00 dimensionless
Mean particle diameter dp — 9.00E−04 m
Viscosity � 1.20E+00 — Pa s
Density � 1.88E−05 2.50E+03 kg/m3

Volume fraction � 4.60E−01 5.40E−01 dimensionless

10−1. The scale of G0 exp[−c(�p,max−�p)] was based on the results of Gidaspow and Ettehadieh
[20] as presented in Enwald et al. [15] (Figure 2). The results from Gidaspow and Ettehadieh [20]
were chosen rather than those from Gidaspow and Syamlal [23] or Bouillard et al. [24] since only
the results reported in Gidaspow and Ettehadieh [20] contained the volume fractions assumed for
the current problem.

Values for other physical properties associated with the flow problem test case are contained in
Table II.
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Discretization of equations of motion

Given the determination, via scale analysis, that �p was relatively constant across the radial position
of the bed, expansion and rearrangement of Equations (13) and (14) yields the two relations that
were used for the discretization.

�2u
,g

�r2
+ 1

r

�u
,g

�r
−
(

1

r2
+ �

�g�g

)
u
,g+ �

�g�g
u
,p=0 (17)

�2u
,p

�r2
+ 1

r

�u
,p

�r
−
(

1

r2
+ �

�p�p

)
u
,p+ �

�p�p
u
,g=0 (18)

First and second derivatives were approximated using central differences in order to limit the
truncation error to be of the order of (�r)2.

�2u
,g

�r2
= u
,g, j+1−2u
,g, j +u
,g, j−1

(�r)2
+O[(�r)2] (19)

�2u
,p

�r2
= u
,p, j+1−2u
,p, j +u
,p, j−1

(�r)2
+O[(�r)2] (20)

�u
,g

�r
= u
,g, j+1−u
,g, j−1

2(�r)
+O[(�r)2] (21)

�u
,p

�r
= u
,p, j+1−u
,p, j−1

2(�r)
+O[(�r)2] (22)

Substitution of these expressions for the derivatives into Equations (17) and (18) led, after some
rearrangement, to the discretized equations that were implemented in the code

u
,g, j =K1u
,g, j+1+K2u
,g, j−1+K3u
,p, j (23)

u
,p, j =K1u
,p, j+1+K2u
,p, j−1+K3u
,g, j (24)

where K1−K6 are coefficients that are combinations of the various parameters in Equations (17)–
(22) and that, it must be noted, depend on the values of the radial position as well as of the particle
and air velocities.

Solution method

The Gauss–Seidel iteration method was used for the numerical solution of the flow equations, but
with the boundary conditions for the particle and gas velocities at ri and ro enforced by constraint
of the velocity values to constant values at these radial locations.

Solution method check: comparison of numerical results with analytical results for single compo-
nent Newtonian flow problem

The accuracy of the flow problem solution method was investigated by comparing numerical results
from the code with the analytical solution for the single component, Newtonian viscosity problem.
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The problem statement, for this case, is

�

[
�
�r

(
1

r

�
�r

(ru
)

)]
=0 (25)

u
(r =ri)=2�ri�0 (26)

u
(r =ro)=0 (27)

with analytical solution given by

u
(r)= �0�ro(
�− 1

�

) ( r

ro
− ro

r

)
(28)

where

�= ri
ro

(29)

The analytical and numerical solutions to this problem are compared in Figure 3. It can be seen
that the numerical results very closely matched the analytical solution. It is noteworthy that the
radial velocity distribution is determined only by radial position, inner radius value, outer radius
value, and angular velocity of inner cylinder and that flow behavior is not dependent on fluid
intrinsic properties such as viscosity or density.

Parameter identification: air velocity distribution for two component flow

As a result of the nature of the algorithm used to solve Equations (23) and (24), it was found
that the solutions for both the air and particle phases converged identically—independent of the
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Figure 3. Comparison of numerical and analytical solution to the single
component Newtonian flow problem.
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Figure 4. Comparison of experimental results with initial numerical solution derived with air
velocity calculated by Equation (23).

input values for air or particle viscosities, for particle sphericity, for particle diameter, and for
air density—to the analytical solution represented by Equation (28) and shown in Figure 3. This
was found to be a result, during solution convergence, of the tendency of the air and particle
velocities to converge toward one another. This caused the scaling of the coupling coefficients �i
to grow large and forced the velocity distributions for the two components to completely converge
to one another. This result did not match the Bingham plastic experimental results as modeled and
reported by Anjaneyulu and Khakhar [10] (cf. Figure 4).

In an effort to better determine the velocity distributions without completely revamping the
solution algorithm, the values for the air velocity were constrained to be the multiples of the
velocities of the solid fraction, viz,

u
,g,i=Ku
,p,i (30)

where K is a constant. The results for K>1, i.e. for air velocity>particle velocity did not, in
general, converge to yield any physically plausible results. Neither did the solutions for K =1.

Some results for various values of K<1 are shown in Figures 5 and 6 for particle viscosity
values set to 1.0 and 0.01 Pa s. For the case of particle viscosity set to 1.0 Pa s (Figure 5), it can be
seen that, as K decreases from 0.9 to 0.0, there is a moderate movement toward the experimental
results. For the case of particle viscosity set to 0.01 Pa s (Figure 6), it can be seen that as K
decreases toward a value of 0.0, the particle velocity distribution seems to fairly closely converge
to the experimental result.

Although, the results appeared to converge toward the experimental result, more work needs to
be done in order to be sure that the particle velocity distributions approach each other as a result of
the physics rather than simply as a result of the mathematical behavior of the current model. It is
not, at this point, clear that the azimuthal air velocity, in this physical situation, would necessarily
tend toward 0 or even that it would necessarily be lower than the particle velocity. To this end,
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Figure 5. Effect of decreasing the air-phase velocity for the case of particle viscosity=1.0Pas.
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future investigation will be conducted and will involve the numerical solution of Equations (17)
and (18) using other discretization schemes. For now, however, the behavior of the model will be
investigated with K , and thus the azimuthal air velocity set to 0.0.

Parameter identification: particle viscosity

A statistical technique was employed to determine the value for the particle viscosity that would
enable the numerical solution to most closely match, using the measure of mean-square difference
from the experimental results.

Mean-square error (MSE) was calculated as

MSE=
∑m

j=1(uexperimental, j −unumerical, j )
2

m
(31)

where u j are the experimentally reported and numerically calculated values of the particle velocity,
j is as used in the discretization, and j =m is the index of the value of the radial position for which
the value of the experimentally reported particle velocity is less than about 10% of its maximum
value. The level of particle viscosity that allowed the numerical solution to most closely approach
the experimentally determined solution was 0.0095 Pa s (Figure 7).

Effect of grid spacing on solution

A comparison of solutions generated by means of different grid spacing is presented in Figure 8,
for solutions involving 25, 50, and 100 grid points. It can be seen that similar convergence was
achieved for all three levels of spacing between grid points and that all three regimes seemed to
approach the experimental result in a similar fashion.
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Figure 7. Material identification for the best value of particle viscosity based on mean-square error between
experiment and model. Best value of particle viscosity appeared to be 0.0095 Pa s.
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Iteration convergence

The convergence of the iterated solution was measured by means of the root mean-square error
(RMSE) between iterations according to

RMSE=
√∑n−1

j=1(uk−uk−1)2

n−1
(32)

where k refers to the kth iteration, j corresponds to the radial position ri, and n corresponds to the
maximum value of j , viz, the maximum radius is denoted, within the FORTRAN code as rn . The
iteration results are shown in Figure 9, where it can be seen that, for the case of 100 grid points
and particle viscosity 0.0095 Pa s, excellent convergence appears to have occurred after about 400
iterations, i.e. at that point RMSE<1%.

Summary of experimental results

The results that were reported by Anjaneyulu and Khakhar [10] were given in terms of the Bingham
plastic parameters as

�r
 = �y+�̇, �r
>�y

�r
 = �y, �r
��y
(33)

where ̇ is the rate of deformation, �r
 is the shear stress, � is the viscosity, and �y is the yield stress,
viz, the level of shear stress below which no deformation will occur. The data are summarized in
Table III. rinterface is defined as the value of the radius for which the shear stress falls to the level of
�y at which point the fluid begins to behave as a solid. Anjaneyulu and Khakhar [10] estimated the
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Figure 9. Convergence of iterations for the case of particle viscosity 0.0095 Pa s and 100 grid points.

Table III. Summary of Anjaneyulu and Khakhar [10] experimental data.

Particle diameter 9.00E−04 m
Inner cylinder radius 6.00E−03 m
Yield stress 4.50E+00 Pa
Viscosity 2.00E−01 Pa s
Shear stress at inner wall 9.00E+00 Pa s
Rotational speed 8.33E−01 rev/s
Theoretical rinterface/ri 1.41E+00
Actual rinterface/ri 2.2E+00

Bingham plastic parameters using least-squares techniques and noted that a significant difference
was measured between the theoretical (Bingham model) and directly observed ratio of critical
radius to inner cylinder radius, viz, the theoretical ratio was 1.41 whereas the ratio that was actually
observed was 2.2.

The computational model seemed to show results for this apparent disparity in critical radius
that fit the experimental data better than did the Bingham model as evidenced by the intersection
point of the two-phase CFD velocity result with the r/ri axis at a value of 2.7 (Figure 10).

Flow effects resulting from variation of sphericity and particle diameter

Comparisons, using the numerical model developed for this work, of flow behavior resulting from
the variation of sphericity and particle size were performed based on particle properties reported
by Cho et al. [16]. Sphericity is defined as the diameter of the largest sphere that can be inscribed
on a particle relative to the diameter of the smallest sphere that can be circumscribed on a particle.

The results of these calculations are shown in Figures 11 and 12. The calculations seemed to
show that resistance to flow increased with decreasing particle size and that resistance to flow
increased with decreasing sphericity. Figure 13, which, shows results for several real materials,
also appears to exhibit the same trend of increasing flow resistance with decreasing particle size
and sphericity. The reason for this can be deduced based on inspection of Equations (8)–(10). As
either sphericity or particle size decreases, the particle Reynolds number, coefficient of drag, and
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Figure 10. Comparison of experimental and numerical velocity distributions as a function of r/ri. Note
that the intersection of the CFD result with the r/ri axis seemed to match the experimental results in

Table III better than the Bingham fluid model.

coupling factor will increase, thereby increasing the resistance to flow. It should not be tacitly
concluded that this trend is correct simply based on the correlations. Future work will involve
more extensive comparison of these results with relevant experimental results, if they are available,
in order to more fully verify whether the current model adequately predicts two-phase fluid flow
behavior.

Extensive searches for relevant comparison data have, to date, not been successful. If adequate
data cannot be found, a different physical regime, for which more extensive validation data can be
identified, will be modeled using the techniques developed for this work. It is not inconceivable
that the effects of sphericity and average particle diameter might depend on the geometry and
other characteristics of the flow regime and particle and fluid components.

SUMMARY AND CONCLUSIONS

It was determined that the two-phase fluid model developed for this work seemed to match the
data from Anjaneyulu and Khakhar [10] fairly well. Although it was a somewhat simple model,
it appeared to yield fairly accurate results. Before a tacit assumption is made; however, that this
model accurately predicts more general two-phase flow phenomena, it needs to be more fully
validated.

It cannot be assumed that it is physically correct to assume that the azimuthal velocity tends
toward 0 or that it is even, in general, lower than the apparent particle velocity. The model will
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Effect of sphericity, mean particle diameter = 0.9 mm
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Figure 11. Effect of sphericity on velocity distribution and resistance to flow. As sphericity decreased, the
calculated resistance to the flow increased.

Effect of mean  particle diameter, sphericity = 1.0
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Figure 12. Effect of average particle diameter on velocity distribution and resistance to flow. As particle
diameter decreased, calculated resistance to the flow increased.
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Figure 13. Effect of sphericity and average particle diameter, for several real materials, on velocity distri-
bution and resistance to flow. As these parameters decreased, calculated resistance to the flow increased.

be discretized using a different scheme, and Equations (17) and (18) will be solved numerically
using the new scheme in order to examine this issue more carefully.

Future efforts relative to the effects of adding radial, z-direction, and turbulent effects will be
investigated by means of problems involving more complex geometry in order to better validate
this model for blast applications.

Finally, it must be noted that the work presented in this paper was for a low Mach number,
steady-state problem, whereas mine blast problems most often involve the detonation of high
explosives with attendant movement of shock discontinuities, fluid, and solid particles at relatively
high velocities. If this methodology is to prove useful when applied to actual mine blast problems
then it must also be adapted and validated for transient problems using initial and boundary
conditions that will create the appropriate shock phenomena.
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